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where 8 is the frequency of non-linear vibrations, which is the same for the vertical vi- 

brations and the bending and twisting vibrations. 
The results of the analysis of the vibrations subject to frequency modulation only based 

on the data in Tables 1 and 2 are collected in Table 3. It can be seen that the domain of 
existence of the solution determined by (4.2) and (4.3) is reduced to a point for every skew- 
symmetric characteristic form of vibrations (such vibrations are possible for one value of 
the frequency xl, and either extends to infinity or disappears completely for every symmetric 
form of characteristic vibrations. 

Therefore, in the case of similar frequencies the non-linear vibrations (4.3) subject to 
frequency modulation can be realized for the given values a,,,. Q,,,,, and (r only, while, as can 
be seen from (4.1), in the case of internal resonance such vibrations can be excited for any 
values of 0 nn, %rn and mT. These results are consistent with the graphs in Figs.2-4. 

Finally, we mention that the regime of vibrations in the case of similar frequencies 
turns out to be more stable under variations of the level of mistuning than the regime of 
vibrations in the case of internal resonance. This is evident from the graphs of the time 
dependence of the amplitude function envelopes for the following three values of detuning: 
F% -0.S x 111-' (the broken line), n 0 (the solid line), and &J o.sx 10-1 (the dash- 
dot line), which are given in Fig.6 for the case of internal resonance (n,(T,) 0.0') and the 
case of similar frequencies (ii,( 0.02). One can see that even a slight violation of the 
resonance condition co,, "!I,, results in the maxima of the amplitude functions being immedi- 
ately reduced to zero. 
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STRESSES IN ELASTIC CONICAL TUBES OF TRANSVERSELY ISOTROPIC MATERIALS WITH 

SPHERICAL ANISOTROPIES UNDER TEMPERATURE AND FORCE LOADINGS* 

I.V. PANFEROV 

Analytic solutions are proposed for a number of new problems on 
determining the state of stress of a transversely-isotropic hollow cone 
with spherical anisotropy. An exact solution of the problem of the 
axisymmetric deformation of a long conical tube (or continuous cone) 
from an elastic transversely-isotropic material with spherical 
anisotropy subjected to an axial force is obtained in a spherical, coor- 
dinate system I<, y, 0; the material axis of symmetry is directed along 
the spherical radius R. A rigorous solution is given of the problem of 
the uniform heating of a conical tube of transversely-isotropic 
material with spherical anisotropy for particular values of Poisson's 
ratios; the material axis of symmetry is directed along the II-axis. For 
arbitrary Poisson's ratios an asymptotic solution is found for the 
temperature problem for a tube with small conicity. 
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The general approach for determining the state of stress of an orthotropic hollow cone 
with a spherical anisotropy /l/ uses the method of separation of variables, which enables the 

problem to be reduced to a one-dimensional one, with subsequent solution by the method of 

discrete orthogonalization. Analytic solutions of problems on the deformation of anisotropic 

cones are presented in the literature for the case when the material has cylindrical 
anisotropy. In particular, exact solutons are constructed for the problems of the stretching 
a cone /2/ and of the selfsimilar heating of a hollow cone /3/ when the axes of physical and 
geometric symmetry of the elastic transversely-isotropic material are collinear. 

1. A conical tube subjected to an axial force. The elastic equilibrium of an anisotropic 
tube bounded by coaxial circular conical side surfaces with a single apex is considered. We 
take the apex as the origin of the spherical system R,cp,O /4/. The inner surface is 
described by the equation 0 = O,, and the outer one by the equation 8 = I?& Generally 
speaking the tube has ends R=R,>O and R = R,>R,. 

If the arc length R,(8, - 0,) is small compared with the segment RI-RR, of the tube 
generatrix, then we all such a tube long. In this case edge effects can be ignored and the 
boundary conditions at the ends R = R, and R ==R, can be specified following the Saint- 
Venant principle. 

Henceforth we will ascribe the subscripts 1, 2, 3, respectively, to the directionsR, cp, 6. 
The connection between the strsses ollT ez2, ua3, o13 and strains %ll QP> E33: 

1 
2 813 in 

the transversely-isotropic material considered with spherical anisotropy can be represented 
as follows /2/ 

El~ll = ku,, - kv’ (uea + us& E,e,, = Q - vuQ3 - kv’a,, 

E,e,, = u33 - vu23 - kv’ull, Epe13 = yu,, 

y = E,iG, k = E,IE, 

(1.1) 

The axis 1 is the material axis of symmetry, E, and E, are the elastic moduli in the 

directions along the axes 2 and 1, respectively, G is the shear modulus, and v and V’ are 
Poisson's ratios. 

The solution of the problem will be sought in the form 

Oij = 
(0) Tii e(j va HI @I Ha (‘3 

H2 1 &dj = Ra ( u, = -, uy = - 
R R (1.2) 

where ulr us are the displacements along axes 1 and 3. 
The Cauchy dependences reduce to the relations 

e,, -= --H,, ez2 = H, + ctg OHS. ea3 = Ha' + H,, e13 = HI' -211, 

The prime denotes differentiation with respect to the argument 0. 
Taking (1.2) into account, we can write the equilibrium equations for the case of axisym- 

metric strain in the spherical coordinate system /4/ 

and thestraincompatibility equations taking the Cauchy relationships into account 

The boundary conditions on the side surfaces of the tube are written as follows: 

213 0%) = 713 w = 0, 233 (4) = 733 w I= 0 

The equilibrium condition /4/ (Q is the magnitude of the axial force) 

2n 1 (tll cose-ra,, sin 8)sin9 de = Q 
@I 

should be satisfied on the endfaces R = R, and R ~=R,. 
Eqs.(1.3) are satisfied automatically for 

(1.3 1 

(1.4) 

(1.5) 

(1.6) 

(1.7) 
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Conditions (1.5) are obviously identical. 
Taking account of relationships (1.1) and (1.7), we write the general 

first equation in (1.4) in the form (B is an undetermined constant) 

(li - kw') rn = -(I - kv') (Q2 + 2a3) -t- (k - ky’) B cm e 

The function 'cl3 is determined from the second relationship in (1.4) 
the equation 

w1 = 
y--2(l~-Yl k - 2kv’ k - (kV’)l 

P 
HO* = ___ I 

I* lJ=k--kv’ 

when (1.7) and (1.8) are taken into account. 

integral of the 

(1.X) 

, which reduces to 

(l.!)) 

The case k>l is of interest. For k > 1 it can be assumed that &,>I for a 
material with a quite definite anisotropy. 

We will find the solution of (1.9). A solution of the appropriate homogeneous differen- 
tial equation is an associated Legendre spherical function of the first kind P'*,*+i, (cos e), S 

‘/,1/4w, - 1 (a function of the cone) /5/. It has no zeros in the interval /cosH \<I. 
Therefore, the solution of (1.9) is the following /6/: 

Z (0) = P!t,,+is (cos 0) {C1 -- C, f U (a) da b \ U (a) [ I’ (fi) dp da } 
8, 

U (a) {sin n. [P!,,,,,, (cos a)lP)-l, V (fl) = sin? PP!:,,,, (cos fl) 

The constants C, and C, are determined from the first two boundary conditions in (1.5) 

The constant B is determined from condition (1.6) which reduces, when the conditions 

t13 (0,) LZ xl (6,) = rJ are taken into account, to the equality 

(1.10) 

We Will write the solution of (1.9) as it applies to a continuous cone with the side 
surface 6 -= 0%: 

The constant C, is determined from the condition IJ,~(~~) 10: 

Note that Z(0) 10 since P! ll,+is (I) == 0 and the function 

0' (0)s V (p)dfi 
0 

has no singularity at 8 = 0. 
The constant B is determined from (1.10) in which we should set 0, -= U. 

2. Uniform heating of a conica tube. Let an elastic transversely-isotropic conical 
tube be subjected to uniform heating or cooling. The body possesses spherical anisotropy, 
where the material axis of symmetry is directed along the H-axis. 

In this case the connection between the stress and strain is described by the relation- 
ships 



EZEll = crll - vu22 - kv’a,, + E2a,AT 

E,s,, = oz2 - wll - kv’a,, + E,a,AT 

EP~Jl = kuo3 - h?’ (alI + oz2) + E,a,AT 

EI~ll = yo13, k = E,!E,, y = EJG 
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(2.1) 

where E, is the elastic modulus along the axis 3 (e), as, a3 are coefficients of linear 
expansion along the axes 2 and 3, and AT is the body temperature (AT : const). 

The solution of the problem is sought in selfsimilar form 

oij ~~ l?ij (Y), Y = rtg 0 (2.2) 

We write the equilibrium equation in a spherical system of coordinates taking (2.2) /4/ 
and the strain compatibility equation into account 

-_(I + Y") ~13' + 2% - $2 - o33 + YJ,, = 0 (2.3 

-_(I + YZ) 83.3' + Y (US9 - %2) -= -3a,, 

(1 4 y") ell' = -FIS, ES3 - e,, = -_(I i- y') I(e,, - CIl)iYl' (2.4) 

where the prime denotes differentiation with respect to the argument y. 
On the tube side surfaces Y = a, = ctg 81 and Y = a2 = c&8, we have 

033 (al) = 038 (%) := 0, UI3 (aI) = 013 !az) = 0 (2.5) 

The condition that the equivalent force in the sections fl =const equal zero is satisfied 
automatically when the equilibrium equations and boundary conditions (2.5) are satisfied. 

We will first examine the special case when kv’ 7 Y = 1/z. 
Setting u13 G 0, we have from the first equation in (2.3) 

20,, = crz2 + ua3 or ell = a,AT (2.8) 

The first equation in (2.4) is satisfied automatically. 
Substituting the second relationship from (2.3) and (2.6) into the second equation of 

(2.4) we obtain 

u3/ 2-LYa u I GW$&u 4 
!/(l+y? 33 - 3 

Ua P 
a3 = -Li- (1 $ yy* 

P = E2 (a3 - a& AT 

Taking the condition 033 (al) = @ into account we represent 

%a = D[Q(Y) --Q(%)l + -+ PV(Y)- w (a,)1 i 

$ (k - 1) [ E2 (1 -t E2)-“s c‘ (1 + t3)+ us3 dt d5 

111 

2Q (y) = yvCl - hl";Y + VI + Y")? 

2W(Y) = Y' - In (1 + Y") 

The constant D is determined from the condition uSS (e,) = 0. 

, n 

(2.7) in the form 

(2.8) 

Eq.(2.8) is solved by an iteration method that is used when 
solving equations of the Volterra type 

F(Y) = 5 ~2 (1 t. 5')~'&I + t')-'l.&')dt d5 
01 
u,,(") (Y) 3 "0 u&11) (Y) z 

D rQ (Y) - Q (%)I + @ (Y) 
Q, (Y) = J/$ IW (Y) - 

U'(a,)l + % (k - 1) F(Y), 

D = -@ (a*) IO (az) - Q (W' 

The superscript FZ denotes the number of the approximate solution. 
The stress u,, is determined from the second formula in (2.3) 

in which we should set 
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(Tar,’ = y?(l + yy/‘[D + + py(l +- y2)-", + +(k- 1) i (4 + E2)-"*c,, d6-j 

(II 

The function oil is determined from relationship (2.6). 
The iteration method mentioned is realized on an electronic computer. Numerical values 

are obtained for twenty approximate solutions of ,J:Ki. The results show that (+n a3 is practi- 

cally identical with Ll$ for thin-walled tubes (( CI~ - nz).:a2& 1). Graphs of the functions 

B$?+~x~o%$@(Y)/P (the solid line 2) and a$ = 5Xlo%(j(y)/P (open circles) are presented in 

the figure for a thick tube for O, 8.4, or= (i, and k = 4. where Y (!I - n,),(n* -~ 0,) 

The distribution of the stress a,,=10'a,(y)'P (solid line 2), 6,, lo%,, (!/)1/J (the dashed 

line) and a,, iCPq,(y)lP (the dark points) is also shown for U, _ li.'tW, (I~ 1; and k 4. 

We will investigate the case when Poisson's ratios are arbitrary and the tube possesses 

small conicity. It is assumed for such a tube that ff2-'<c 1 and the shear stress (513 is 

small compared with the other stresses. Consequently, it is permissible to discard the terms 

013 and cl3 respectively, in the second equation in (2.3) and the first equation in (2.4). 

Moreover, we set I+ Y"z Y" in (2.3) and (2.4). We have 

-y%,,' + 2a,, - (52% - 033 + yo,, _ 0 (W) 
0 

--Y-u,,’ + y (us3 - a*,) = 0 

Eli’ = 0, 8,, - El, 7 --y’ [(Fz2 - F,,)/yl’ 

The solution of system (2.1) and (2.9) under the conditions (2.5) will be called asymp- 
totic. 

We will write the third equation in (2.9) in the form (A is a constant) 

I:',r,, ~= E,a?AT + A or ul, - YU?~ - kv’u,, .= :I ('.I(') 

Integrating the second and fourth equations in (2.9) taking (2.10) and the first two 

boundary conditions in (2.5) into account, we obtain 

oxi = n(CY 0+1 _;- Q-0 __ I), UP? = rI (-&yW'l + &/'-','-- 1) (YJ.11) 

II = P -'- (v - kv’) A 

(l-G)(d- 1) . 

It was assumed that o # 1 when deriving (2.11). 

The function 013 is determined from the first equation in (2.9) 

c,:,z &__A__n"Y 
Y Y ’ 

j(Y) = _+e"- B+D ny'-O it 1 - v .~ I,+ 

f3* 2 1 -z * 0 (1 - 2v) 

The constants B and A are determined from the last two conditions in (2.5), we have, in 

particular, for Y = kv’ 
I? I3 = (1 - 2Y) u,,iy 

This last formula shows that the right-hand sides of the second equation in (2.3) and 
the first equation in (2.4) can actually be neglected if 82-Z < 1. 

The solutions obtained in this paper for the problem of temperatureheating of a hollow 
cone show that the state of stress of a conical shell of linearly variable thickness ((0, - 0,): 

U,< 1) depends only slightly on the ratio k = E,IE,. 

1. 

2. 
3. 

4. 
5. 
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A HOLLOW ELLIPSOIDAL NEEDLE IN AN ORTHOTROPIC ELASTIC MEDIUM* 

G.N. MIRENKOVA and E.G. SOSNINA 

The problem of the stress distribution on the surface of a hollow 
ellipsoidal needle in an orthotropic elastic medium and a homogeneous 
external field is solved. Explicit expressions are obtained for the 
stresses on the needle surface in terms of the elastic constants of the 
medium and parameters of the ellipsoid in a local system of coordinates 
connected to the normal to the surface at each point of the needle. The 
general solution of the problem of the stress concentration on an 
ellipsoidal inhomogeneity /l/ and the passage to the limit cases of an 
ellipsoidal cavity based on the presence of small parameters /2/ is 
used. 

1. Consider a hollow ellipsoidal needle, i.e., an ellipsoidal cavity, one of whose 
dimensions is large compared with the other two, in an orthotropic unbounded elastic medium 
subjected to an external uniform field uoafl. The equation of the ellipsoid is written in 

the form 
(1.1) 

in an (x,, z?, z,J system of coordinates rigidly connected to the ellipsoid. 
We will assume that the axes of elastic symmetry of the external orthotropic medium 

coincide with the axes of the ellipsoid. Then the tensor of the elastic constants of the 
medium c@+ has nine non-zero components that are denoted according to the usual rule /3/ 

by 

ca@fi = cafi (a. p = 1, 2, 3) (1.2) 
P3 = C14, p1 _ cs5, cl=? z ce6 

The stresses oafi on the surface of an ellipsoidal cavity in a uniform external field 

aOip have the form 
o'xfl(n) = fi"!,(n)o?, 1;"!,(n) = B"A"P(n)Rxbhll (1.3) 

where n = (nl, n.$, n3) is the normal to the ellipsoid surface. 
The tensor stress concentration coefficient F?_,,(n) can be represented in the form of 

the product of two factors. The first of them, the tensor Bagxp(n) depends only on the 
elastic constants of the medium and the inclusion and on the normal n to the inclusion surface, 
and remains finite for any passages to the limit. 'For a cavity the tensor B(n) has the form 
/l/ 

BafiA@(n) = ,+>.!I _ pWPKxpllv (n) cqvk $4) 

where the tensor K(n) for an orthotropic medium is constructed explicitly in terms of the 
Fourier transform of Green's tensor of a homogeneous medium. The expressions for the com- 
ponents of K(n) in terms of the elastic constants of an orthotropic medium and the coordinates 
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